




Dr. Cheung-Wei Lam Apple Distinguished Engineer IEEE EMC Respected Speaker

lam@alum.mit.edu





#### **Outline**

- What are they?
  - L = Inductance
  - I® = Current Return Path
- Why do we care?
- Common Misconceptions
- How do we control them?
- How do we identify problems?
- Summary



#### L: What is it?

- Various kinds: *loop*, *mutual*, external, internal, kinetic, self, *partial*, self partial, mutual partial, partial mutual, ...
- Definition of inductance for closed loops:

$$L_{1} = \frac{\Psi_{1}}{I_{1}} \qquad M_{21} = \frac{\Psi_{21}}{I_{1}}$$

- External, internal, kinetic
- Self, *partial*, self partial, mutual partial, partial mutual



#### L: Recommended References

- Book:
  - Clayton Paul, "Introduction to Electromagnetic Compatibility"
- Paper:
  - Al Ruehli, "Inductance Calculations in a Complex Integrated Circuit Environment," IBM Journal of R&D, September 1972.
- Articles:
  - Bruce Archambeault, "Decoupling Capacitor Connection Inductance," IEEE EMCS Newsletter, Spring 2009
  - Bruce Archambeault, "Part II: Resistive vs. Inductive Return Current Paths," IEEE EMCS Newsletter, Fall 2008



#### L: Why do we care?

- Affects signal quality, crosstalk, EMI.
- Voltage Drop/Fluctuation

$$V_{L} = L \frac{dI_{L}}{dt} \qquad \frac{+ V_{L} - V_{L}}{I_{I}}$$

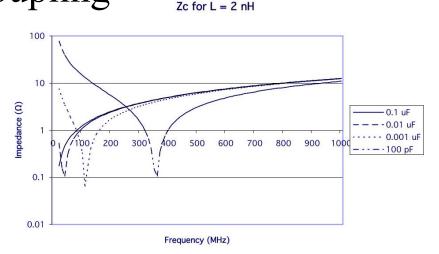
Crosstalk & EMI

$$V_2 = M_{21} \frac{dI_1}{dt}$$
  $M_{21} = L_{21}$ 

April 2022 Dr. Cheung-Wei Lam 5

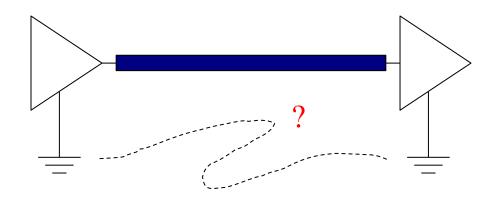


## Why do we care?


- Transmission Line Discontinuity
  - → Signal Ringing // //



Filtering & Decoupling


$$- Z_c(f)$$

$$- f_o = \frac{1}{2\pi\sqrt{LC}}$$



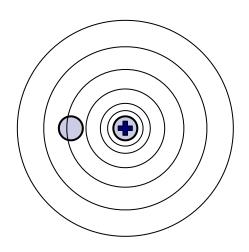


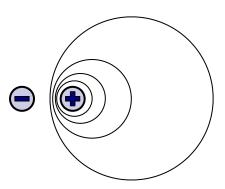
#### **IR:** What is it?



• Is ground a zero-impedance equipotential surface?

$$-V_G = I_G Z_G = I_G (R_G + j\omega L_G) \neq 0$$



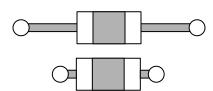


#### **I**®: Why do we care?

- Increases current loop area A
  - EMI ↑
- Increases loop inductance L
  - Signal Quality ↓
  - EMI ↑
- Increases mutual inductance M
  - Crosstalk ↑
  - **EMI** ↑
- Increases ground (return) inductance L<sub>G</sub> or M<sub>G</sub>
  - **EMI** ↑



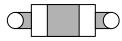
- Mistake loop L as sum of self inductances  $(L_{self})$ !?
- Overlook the importance of return proximity!?






April 2022 Dr. Cheung-Wei Lam 9

## L: Mounting Inductance



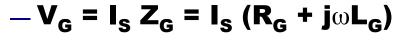


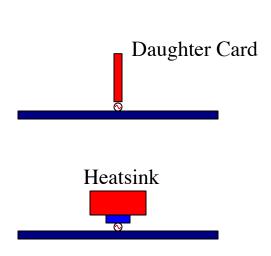


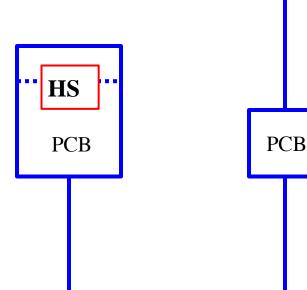

- Increase width.



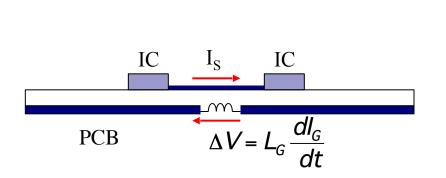


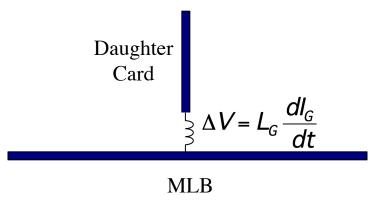

— Think return proximity!

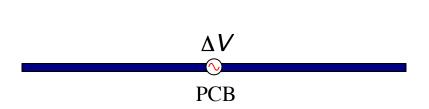


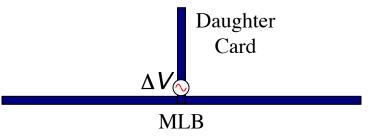




— Think loop inductance!!


- Ground Drop  $\propto$  Self Inductance (L<sub>Self</sub>)!?
  - Ground Drop is a main source of CM radiation!



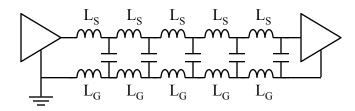




# L: $\Delta V = L_G dI_G/dt$

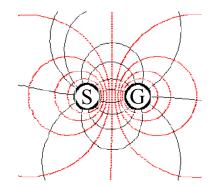






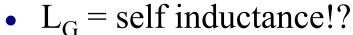






#### L: Ground Inductance

• Transmission Line:  $L_T = L_S + L_G$ 

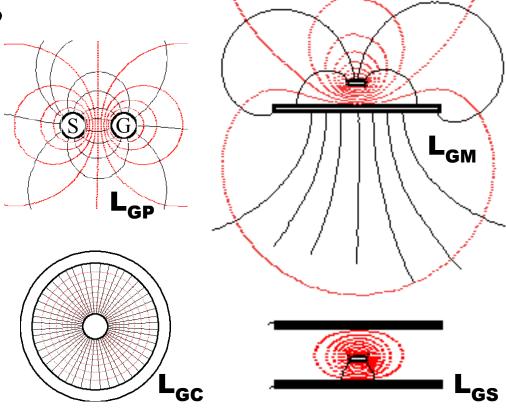



•  $\Psi_G$  = magnetic flux around ground conductor

$$L_G = \frac{\Psi_G}{I_G}$$



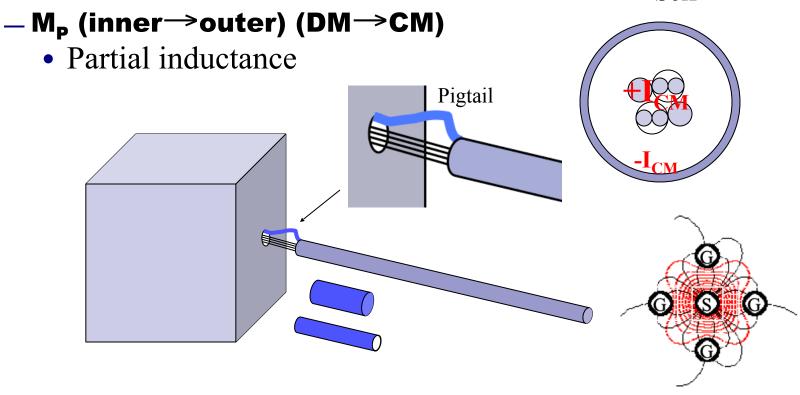
Magnetic FieldElectric Field


# L: $L_G = ?$



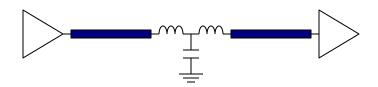
- $-L_{G} = M_{G} (DM \rightarrow CM)$ 
  - Partial inductance
- Pairs (S, P, V, W)

• 
$$L_{GP} = L_T/2$$

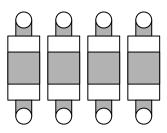

- Microstrip
  - $L_{GM} \ll L_{T}$
- Stripline
  - $L_{GS} \ll L_{GM}$
- Coaxial
  - $L_{GC} \approx 0$



Magnetic Field


Electric Field

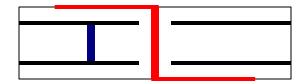
• Pigtail termination is bad because of its L<sub>Self</sub>!?

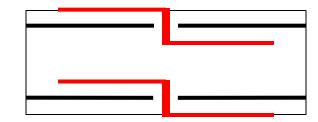




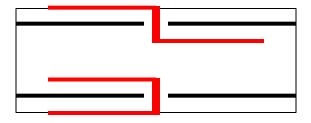

- Smaller is always better!?
  - Excess capacitance causes reflections!




- Inductance parallels down like resistors!?
  - Don't forget M!
  - Spread out decoupling capacitors!
  - Alternate power/ground pins!



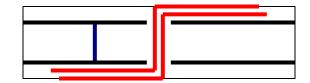

- Overlook mounting inductance vs. component inductance!?
  - Don't spend on expensive low-L filters unless layout has already been optimized.



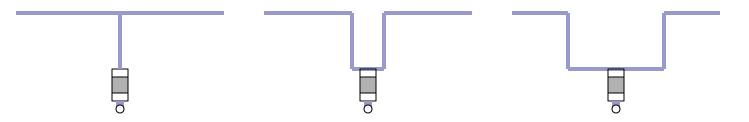

- Via Inductance =  $L_{Self}!$ ?
  - Think loop inductance!



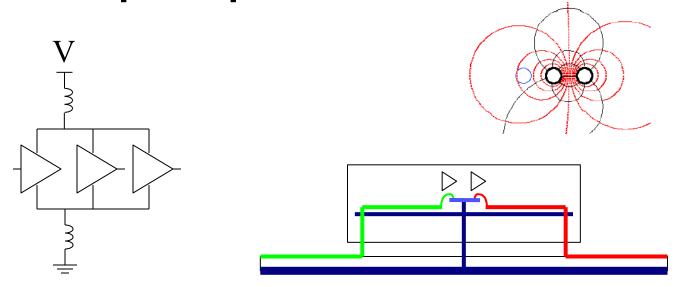



- Overlook the dependence on current distribution!?
  - Current distribution affects inductance!

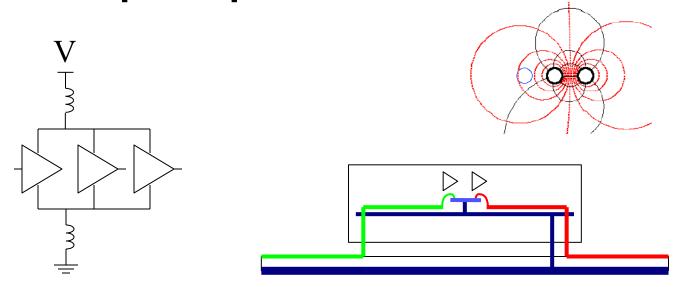




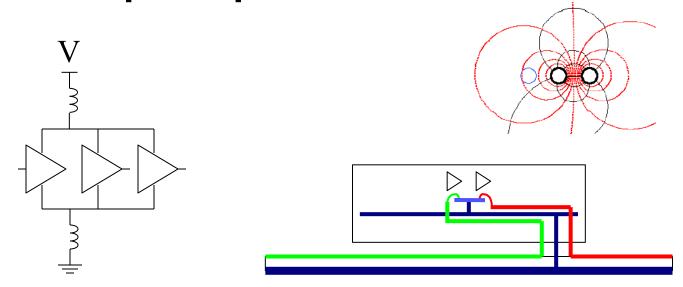

- Overlook the importance of return proximity!?
  - Think separation.
  - Think return proximity!



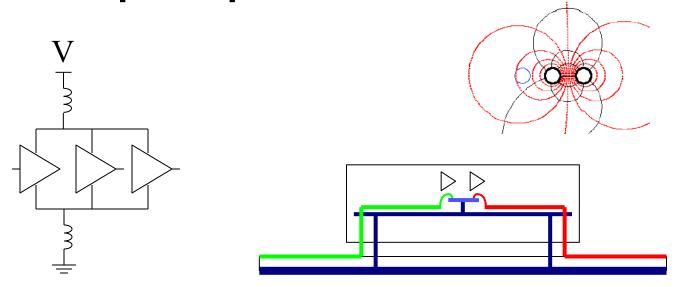




- L<sub>Self</sub> degrades capacitor performance!?
  - Think mutual inductance!




- Ground Bounce & Power Noise  $\propto L_{Self}(L_P)$  of Pin!?
  - Think loop-to-loop mutual inductance!




- Ground Bounce & Power Noise  $\propto L_{Self}(L_P)$  of Pin!?
  - Think loop-to-loop mutual inductance!



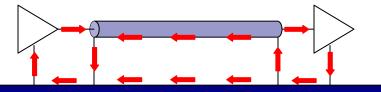
- Ground Bounce & Power Noise  $\propto L_{Self}(L_P)$  of Pin!?
  - Think loop-to-loop mutual inductance!



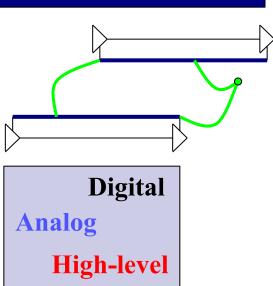
- Ground Bounce & Power Noise  $\propto L_{Self}(L_P)$  of Pin!?
  - Think loop-to-loop mutual inductance!



# v

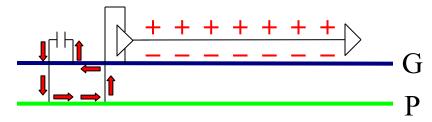

#### **IR:** Common Misconceptions

• Signal ground is a current source/sink!?

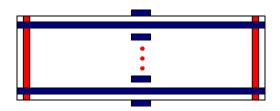


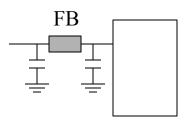

- Ground plane is a zero-impedance equipotential surface!?
  - $-V_G = I_G Z_G = I_G (R_G + j\omega L_G) \neq 0$
  - At kHz:  $R_G \gg j\omega L_G$ 
    - IR drop causes common-impedance coupling.
  - At MHz/GHz:  $R_G \ll j\omega L_G$ 
    - I® affects A, L, M, SI, EMI.

- Current takes the least resistance path!?
  - $Z_G = R_G + j\omega L_G$
  - Think R at  $f \le kHz$ .
  - Think L at f ≥ MHz!



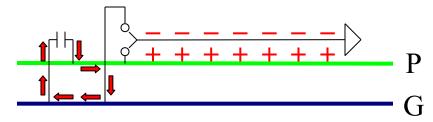

- Current returns along intended paths!?
  - IR drop → common-Z coupling.
  - Current spreads out at  $f \le kHz$ .
  - Single-point grounding used for:
    - Low-level analog subsystems,
    - High-level noisy subsystems, e.g. motor drivers.



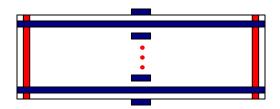



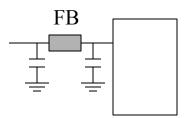

• Current returns through ground but not power!?



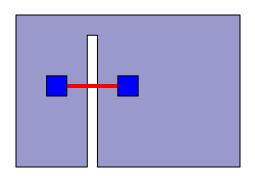

- Ground and power planes are interchangeable!?
  - Ground is connected to chassis, but not power.
  - Power isolation breaks the symmetry.



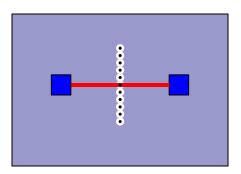



• Current returns through ground but not power!?

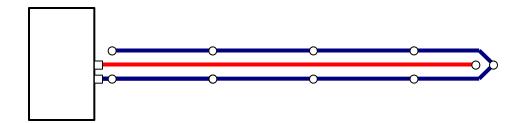



- Ground and power planes are interchangeable!?
  - Ground is connected to chassis, but not power.
  - Power isolation breaks the symmetry.

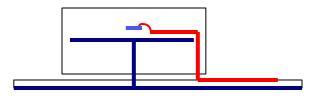


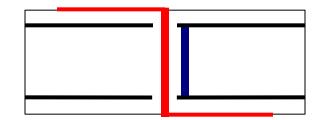



• Overlook horizontal return path!?




- Traces crossing plane cuts
  - Avoid ground plane cuts.
  - Route around plane cuts.
  - Use stitching capacitors.

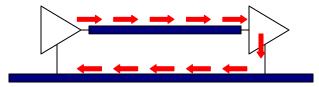




- Overlapping via antipads
  - Stagger vias.
  - Space vias apart.

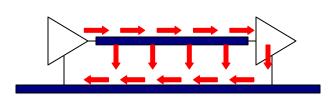
- Overlook vertical return path!?
  - Trace to Plane

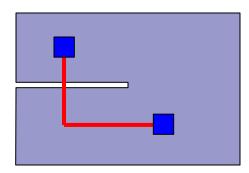


- Plane to Plane



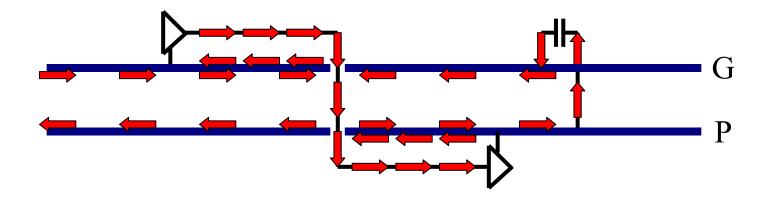




- Overlook cross-board return paths!?
   Avoid discontinuity.
   Provide capacitors.
- Overlook off-board return paths!?

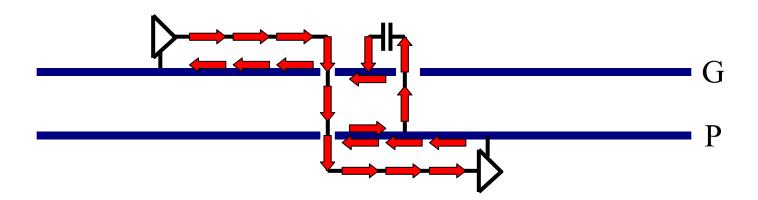
- Current flows in loops.
  - Think of signal path and return path separately!?




- Current flows in loops, but not this way.
- Current flows in pairs!
  - Signal and return go hand-in-hand.



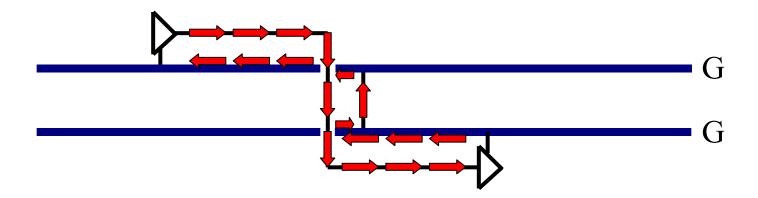





• Trace out the current return path.



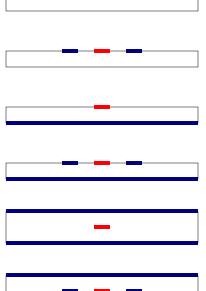



• Trace out the current return path.



April 2022 Dr. Cheung-Wei Lam 32




• Trace out the current return path.



April 2022 Dr. Cheung-Wei Lam 33

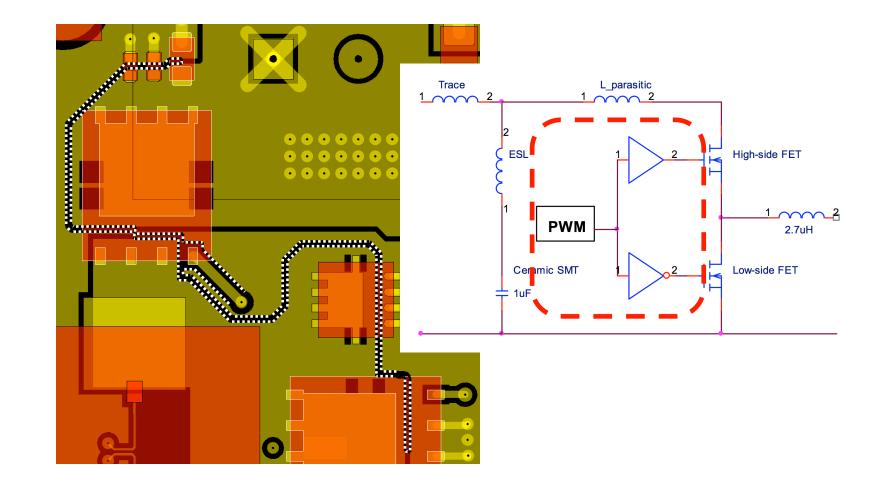
#### L: How do we control them?

- $L \rightarrow Signal Ringing$ 
  - Small loop (adjacent return, short, wide).
- $M_{21} \rightarrow Crosstalk$  (Inductive Coupling)
  - Separation, return proximity, twisting, shielding.
- $L_G(M_G) \rightarrow Ground Drop \rightarrow E_{CM}$ 
  - Coaxial, stripline, microstrip.
  - Small H, large W, away from edge, guard traces.
- $L_C \rightarrow Decoupling$ 
  - Small loop (short wide traces, adjacent vias).
  - Use multiple capacitors and spread them out.
- $M_C \rightarrow Filtering$ 
  - Minimize M (eliminate stub, short trace to ground).





#### **IR:** How do we control them?


- At kHz:  $R_G \gg j\omega L_G$ 
  - Low-level analog or high-level noisy subsystems
    - Single-point grounding prevents common-Z coupling.
- At MHz/GHz:  $R_G \ll j\omega L_G$ 
  - Horizontal return
    - Use ground planes/grids instead of ground traces.
    - Avoid traces crossing plane cuts.
  - Vertical return
    - Provide adjacent return pins for noisy or susceptible pins.
    - Provide adjacent vias, stitching capacitors as return bridges.
    - Provide sufficient vias for guard traces.

#### L & IR: How do we identify problems?

| Options                                        | Pros                                                                   | Cons                                                                                      |
|------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Fix when Fail                                  | Less design time                                                       | Risks: time, cost,                                                                        |
| Layout Review                                  | Identify problems early                                                | Labor intensive                                                                           |
| Layout Checking Tool                           | Identify problems quickly<br>Less labor intensive                      | Report 100's of violations<br>Require expertise & time to<br>identify critical violations |
| Automated & Customized<br>Layout Checking Tool | Identify problems quickly No setup required Report critical violations | Require automation and customization development                                          |

April 2022 Dr. Cheung-Wei Lam 36

## **I**®: Tracing and Highlighting





#### **Summary**

- L & I® affects signal quality, crosstalk and EMI.
- Inductance (L)
  - Forget self inductance.
  - Think loop, mutual, and partial inductance!
  - Think return proximity!
- Current Return Path (I®)
  - Low f: Current spreads out as  $R_g \gg j\omega L_g$ .
  - High f: Trace out I® to identify discontinuities.