IEEE EMC SOCIETY BOSTON CHAPTER MEETING

EMI TESTING ON SPACE SYSTEMS

Jens Medler / María Jiménez Lorenzo

ROHDE&SCHWARZ

Make ideas real

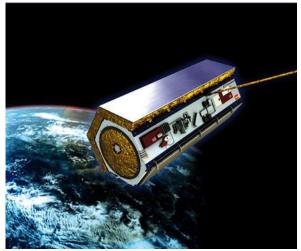
OVERVIEW

- Use of FFT-based Measuring Receivers for more reliable and faster EMI testing on space systems
- Joined work INTA and Rohde & Schwarz

María Jiménez Lorenzo

Jens Medler

Make ideas real

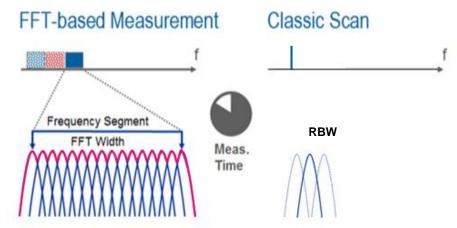

OVERVIEW

- Complexity of EMC testing on space systems
- CISPR 16 FFT-based measuring receiver
- Consideration of measurement time
- ► ANSER EMC test campaign by INTA
 - Comparison measurements on a nanosatellite
 - Measurements with small RBW in frequency notches
- Conclusions

COMPLEXITY OF EMC TESTING ON SPACE SYSTEMS

The complexity of space systems in terms of

- ► High integration level, high electronics density
- Load limitations
- High reliability
- Diverse electromagnetic ambient: pre-launch, launch, orbit
- Qualification tests to demonstrate the design requirements have been achieved with the specified margins: climatic, mechanical, RF tests, EMC...

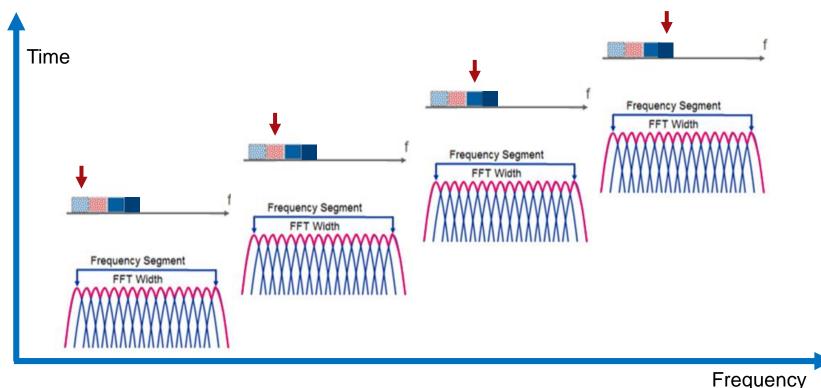


Spanish Satellite Earth Observation "Paz"

MOTIVATION FOR FFT-BASED MEASURING RECEIVERS

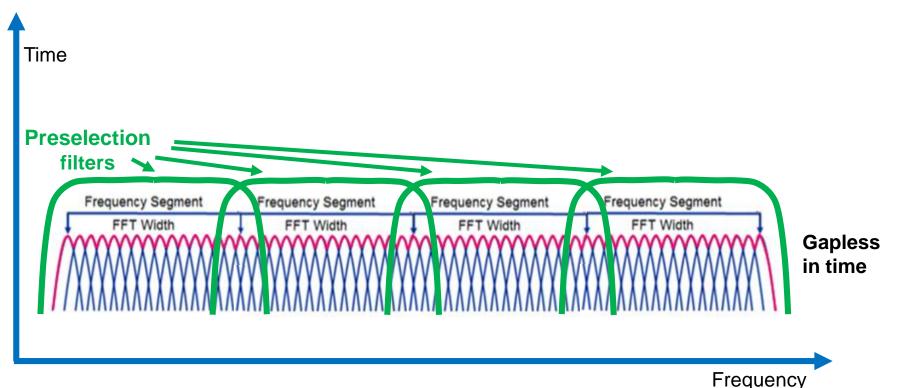
More Speed – FFT-based receivers are measuring spectral segments much wider than the resolution bandwidth during the measurement time by parallel calculation at several frequencies

More Reliable – FFT allows application of longer measurement times, e.g. for measuring intermittent signals

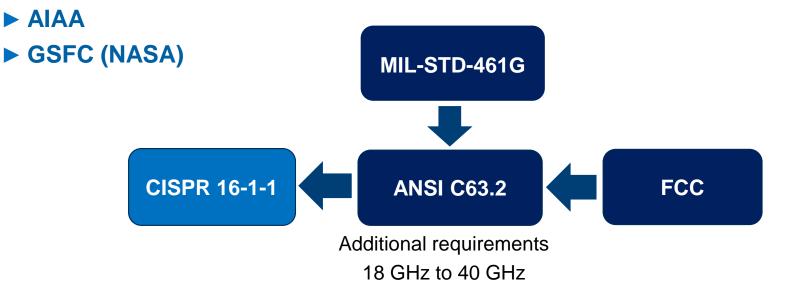


Ultra-fast scan time for entire frequency range

Long scan time for entire frequency range


MOTIVATION FOR FFT-BASED MEASURING RECEIVERS

Consecutive measured FFT-Segments if Span > FFF Width


MOTIVATION FOR FFT-BASED MEASURING RECEIVERS

Parallel measured FFT-Segments

Applicability

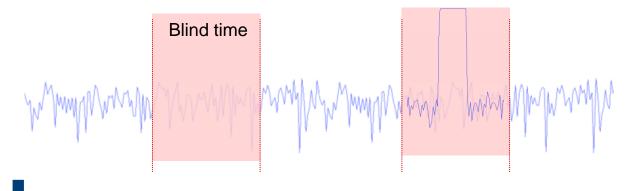
- Military & Aerospace Standards
 - ► MIL-STD 461G

Applicability

- Commercial Product Standards
 - CISPR 11:2015 (Industrial Scientific Medical)
 - CISPR 14-1:2016 (Household)
 - ► CISPR 15:2013 (Lighting)
 - CISPR 25:2016 (Automotive)
 - ► CISPR 32:2012 (Multimedia)
 - CISPR 36:2020 (Automotive)
 - ► FCC Part 15, ANSI C63.4 (referencing ANSI C63.2:2016)
- Commercial Generic Standards
 - ► IEC 61000-6-3 (Residential), -6-4 (Industrial), -6-8 (Light-industrial)

Amendment 1:2010-06 to CISPR 16-1-1 (3rd Ed.)

Blackbox approach

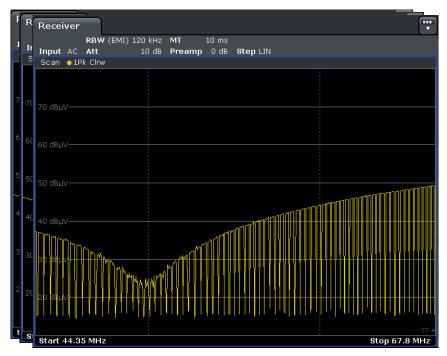


► FFT-based measurement receiver for compliance testing

 "instrument such as a tunable voltmeter, an EMI receiver, a spectrum analyzer or an FFT-based measuring instrument, with or without preselection, that meets the relevant parts of this standard"

Amendment 1:2010-06 to CISPR 16-1-1 (3rd Ed.)

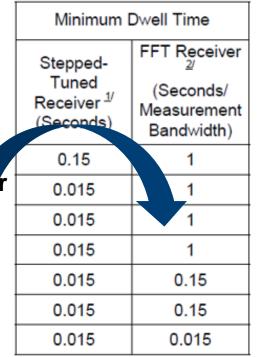
- ► With traditional instruments there is a blind time between capturing the signal
- Information might be and will be overlooked



"for EMI measurements, FFT-based measuring instruments shall sample and evaluate the signal continuously during the measurement time"

CONSIDERATION OF MEASUREMENT TIME

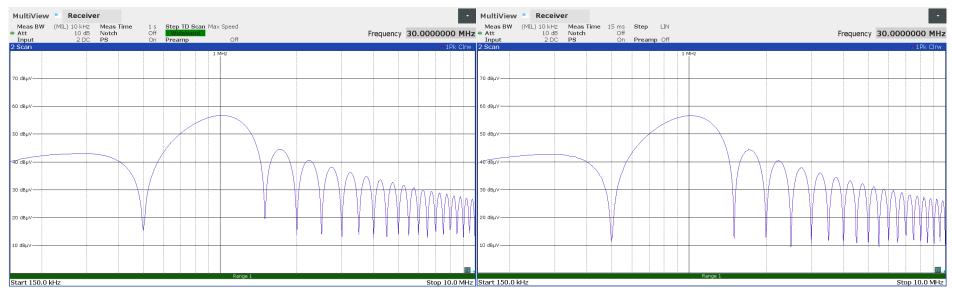
Wrong measurement time can result in enormous errors!


- Pulse modulated carrier with 12 ms pulse period, Time Domain Scan shows closed trace with 12 ms measurement time
- Gaps in TD Scan trace with
 10 ms measurement time
- Even when 10 ms yields a closed trace in Stepped Scan, zooming in reveals gaps in the trace
- ► Important minimum measurement (dwell) time ≥ signal period!

CONSIDERATION OF MEASUREMENT TIME

More reliable when applying longer measurement times

- Example: MIL-STD-461G (2015)
- A pulse signal that occurs once per second with a short duration of 10 microseconds will typically be captured at a number of measurement points with a stepped-tuned receiver
- But would have only about a 1.5 % probability of being captured by the FFT-based measuring receiper (0.015 s measurement time for 1 s period)
- The solution is to increase the measurement time to at least 1 second to detect the pulse as required in MIL-STD-461G


Source: MIL-STD-461:2015 (Rev,G)

CONSIDERATION OF MEASUREMENT TIME

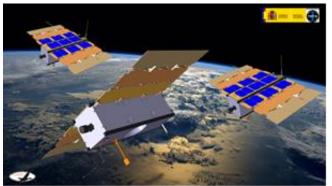
Reliable pulsed signal measurements independent of scanning method

FFT-based Receiver in TD Scan Mode (RBW = 10 kHz, Minimum DT = 1 s)

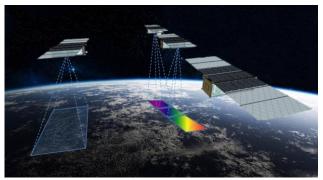
Traditional instrument in Stepped Scan Mode (RBW = 10 kHz, Minimum DT = 15 ms)

INTA TESTING CAPABILITIES

EMC Tests according to civilian, military (MIL-STD-461, AECTPs NATO), aeronautical (RTCA DO-160) and space (ECSS-E-ST-20-07c) standards


DEYMOS satellite test campaign INTA semi-anechoic chamber ISO8 (Source: www.inta.es) ESA VEGA test campaign INTA anechoic chamber (Source: www.inta.es)

15 Rohde & Schwarz


EMI Testing on Space Systems

ANSER EMC TEST CAMPAIGN

- ANSER (Advanced Nanosatellites Systems for Earth Observation Research) designed by INTA
- ► Main concepts
 - Constellation of nanosatellites
 - Formation flying
 - Fractionated instruments
 - Miniaturized optical technologies
- ► Main goal
 - Earth Observation Missions for monitoring the quality of water reservoirs overthe Iberian Peninsula

Source: ANSER flyer - INTA


Source: ANSER formation flight - INTA

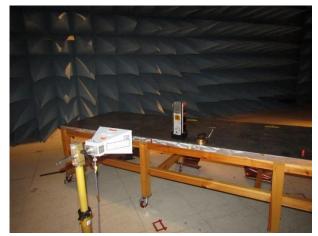
16 Rohde & Schwarz

ANSER EMC TEST CAMPAIGN

Measurement Ranges and Test Setup

- Facility: INTA semi-anechoic chamber (24 m x 14 m x 10 m) ISO 8 cleanliness conditions
- Electric field radiated emissions measurements on the leader Flight Model (FM) from 14 kHz up to 18 GHz
 - ▶ 14 kHz 30 MHz: Rod Antenna, vertical polarization
 - 30 MHz 200 MHz: Biconical Antenna, vertical and horizontal polarization
 - 200 MHz 1 GHz: Double Ridge Horn, vertical and horizontal polarization
 - 1 GHz 18 GHz: Double Ridge Horn, vertical and horizontal polarization
- ► Test setup:
 - $\blacktriangleright \ \ \mathsf{RE102} \ \mathsf{MIL}\text{-}\mathsf{STD}\text{-}\mathsf{461G} \to \mathsf{FFT} \ \mathsf{mode}$
 - $\blacktriangleright \ \ \mathsf{RE} \ \ \mathsf{ECSS}\text{-}\mathsf{E}\text{-}\mathsf{ST}\text{-}\mathsf{20}\text{-}\mathsf{07c} \ \ \mathsf{Rev.2} \to \mathsf{Stepped} \ tuned \ mod$

RE – Biconical Antenna (30 MHz – 200 MHz) Source: INTA


ANSER EMC TEST CAMPAIGN

Why using a FFT-based measuring receiver?

- More reliable measurements
 - Capture transient events, e.g. intermittent radio signals, upfolding solar panels...

► Time saving

- EUTs can be operated during short periods of time without damage
- Several operating modes tested
- Measurement in frequency notches

RE – Horn Antenna (1 GHz – 18 GHz) Source: INTA

- Electric field radiated emission tests have been performed in the frequency range from 14 kHz to 18 GHz
- According to ECSS-E-ST-20-07c Rev.2 with the measuring receiver in stepped-tuned mode
- And to MIL-STD-461G with the measuring receiver in FFT mode
- Bandwidths (BW) and measurement times

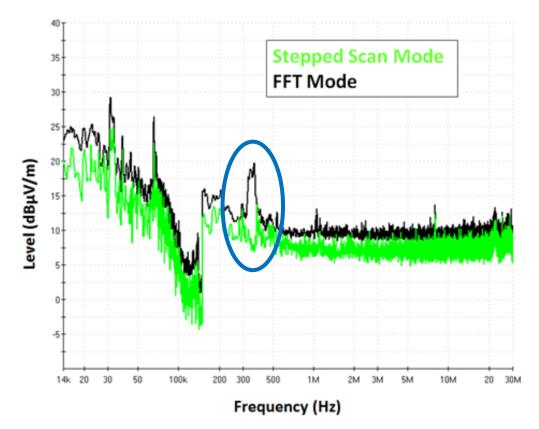
Frequency Range	6 dB bandwidth	Dwell time		
30 Hz – 1 kHz	10 Hz	0.15 s		
1 kHz – 10 kHz	100 Hz	0.015 s		
10 kHz – 150 kHz	1 kHz	0.015 s		
150 kHz – 30 MHz	10 kHz	0.015 s		
30 MHz – 1 GHz	100 kHz	0.015 s		
Above 1 GHz	1 MHz	0.015 s		

Frequency Range Tuned Bandwidth (Seconds/ Receiver 1/ Measurement (Seconds) Bandwidth) 30 Hz - 1 kHz 10 Hz 0.15 1 1 kHz - 10 kHz 100 Hz 0.015 1 10 kHz - 150 kHz 1 kHz 0.015 1 150 kHz - 10 MHz 10 kHz 0.015 1 10 MHz - 30 MHz 10 kHz 0.015 0.15 30 MHz - 1 GHz 100 kHz 0.015 0.15 0.015 0.015 Above 1 GHz 1 MHz

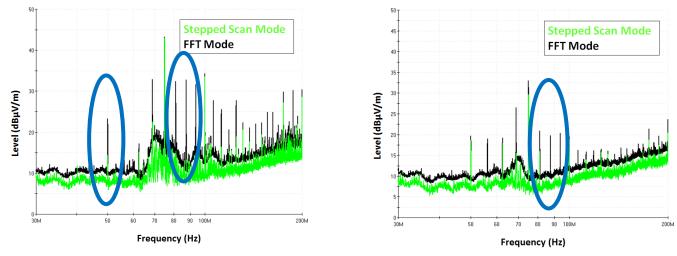
6 dB

Resolution

Minimum Dwell Time

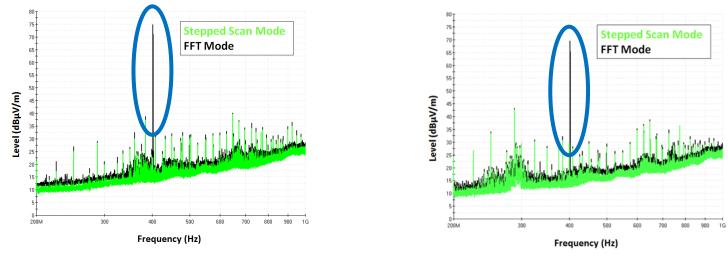

Stepped-

FFT Receiver

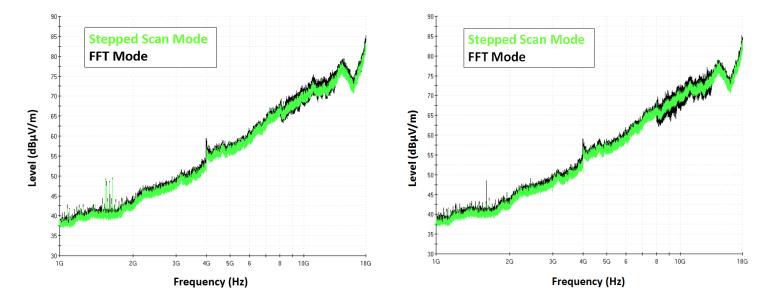

Source: MIL-STD-461:2015 (Rev,G)

Source: ECSS-E-ST-20-07c Rev.2

- Measurement results in the range of 14 kHz to 30 MHz, vertical polarization
- Differences can be found around 300 kHz due to a not steady signal



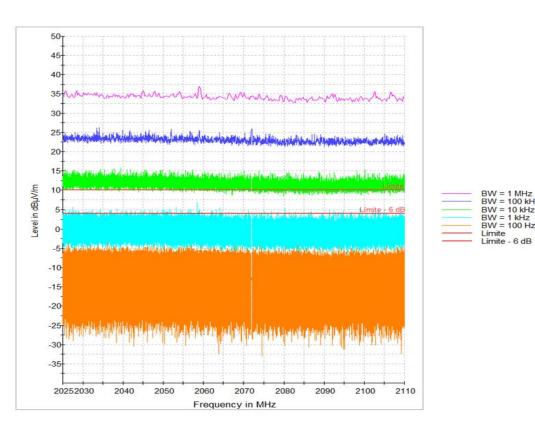
- Measurement results in the range from 30 MHz to 200 MHz, vertical polarization (left) and horizontal polarization (right)
- Significant differences can be found in both polarizations related to an internal clock, some of the harmonics are steady and others are intermittent
- In FFT mode all harmonics are recorded while with the stepped scan mode some of them are missing or the measured level is lower



EMI Testing on Space Systems

- Measurement results in the range from 200 MHz to 1 GHz, vertical polarization (left) and horizontal polarization (right)
- Significant differences can be found in both polarizations related to an intermittent signal at 401.85 MHz with a duration of 200 ms and a period of 10 seconds
- ► In FFT mode the signal was captured while with the stepped scan mode not

- Measurement results in the range from 1 GHz to 18 GHz, vertical polarization (left) and horizontal polarization (right)
- In this frequency range no huge differences are found between both measurement modes


TIME SAVING IN ANSER EMC TEST CAMPAIGN

ECSS-E-ST-20-07c Rev.2: EMI receiver in stepped-tuned mode

MIL-STD-461G: EMI receiver		Frequency Range		6 dB BW	Step Size	Dwell time	Total duration	
<u>in FFT mode</u>	Frequency Range	6 dB	Step	Dw	ell	Total	0.015 s	40''
		BW	Size	tim	ie 🛛	duration	0.015 s	2' 38''
1 minute	14 kHz – 150 kHz PV	1 kHz	250 Hz	1 s		7''	0.015 s	1' 25''
	150 kHz – 10 MHz PV	10 kHz	2,5 kHz	1 s		4''	0.015 s	1' 24''
	10 MHz – 30 MHz PV	10 kHz	2,5 kHz	0.15 s		2''	0.015 s	6' 35''
	30 MHz – 200 MHz PV	100 kHz	25 kHz	0.15 s		3''	0.015 s	6' 34''
	30 MHz – 200 MHz PH	100 kHz	25 kHz	0.15 s		3"	0.015 s	13' 54''
	200 MHz – 1 GHz PV	100 kHz	25 kHz	0.15 s		5''	0.015 s	13' 52''
	200 MHz – 1 GHz PH	100 kHz	25 kHz	0.15 s		5''	48 minute	
	1 GHz – 18 GHz PV	1 MHz	250 kHz	0.015 s	5	16''		
	1 GHz – 18 GHz PH	1 MHz	250 kHz	0.015 s	5	16'']	

MEASUREMENTS IN FREQUENCY NOTCHES

- Frequency notch:
 2025 MHz 2110 MHz
- Ambient noise level requirement: At least 6 dB below applicable limit
- Adequate bandwidth: 100 Hz

MEASUREMENTS IN FREQUENCY NOTCHES

Frequency Range (<i>Span</i>)	6 dB BW	Step Size (∆f) (BW * 0,4)	Number of freq. points (n) (Span/∆f)	Total duration (n * 0,015 s)	
2025 MHz – 2110 MHz → 85 MHz	1 MHz	400 kHz	213	3"	
	100 kHz	40 kHz	2125	32"	
	10 kHz	4 kHz	21250	5' 9"	
	1 kHz	400 Hz	212500	53' 8"	
	100 Hz	40 Hz	2125000	8h 51' 15"	

Stepped Scan Mode with BW = 100 Hz:

≈ 9 hours

▶ FFT Mode
 with BW = 100 Hz
 ≈ 1,5 minutes

	•	iency Range (<i>Span</i>)	6 dB BW	Step Size (∆f) (BW * 0,25)	Total duration (dwell time 0,015 s)
	2025 MHz – 2110 MHz → 85 MHz	1 MHz	250 kHz	< 2"	
		100 kHz	25 kHz	< 2"	
		10 kHz	2.5 kHz	< 2"	
		1 kHz	250 Hz	10"	
		100 Hz	25 Hz	1' 33"	

CONCLUSIONS

- FFT-based measuring receivers can be used for EMI compliance measurements in accordance with MIL-STD-461G if the receiver is in line with ANSI C63.2 and CISPR 16-1-1
- The use of FFT-based measuring receivers is motivated by reducing the scan time by several orders of magnitude without degradation of accuracy – This is particular useful when measuring with small receiver bandwidth in a frequency notch
- Measurement results become more reliable when applying longer measurement times and with multiple scans in combination with the receiver's max hold function – This is particular useful when measuring intermittent disturbance signal and transients

EMI TESTING ON SPACE SYSTEMS

Thank you for your interest!

ROHDE&SCHWARZ

Make ideas real

