Electromagnetics for the Working EMC Engineer

Dr. Bruce Archambeault

Missouri S&T EMC Lab bruce@brucearch.com

June 2022

Introduction

- Electromagnetics can be scary

 Universities LOVE messy math
- EM is not hard, unless you want to do the messy math
- Goal:
 - Intuitive understanding
 - Understand the basic fundamentals
 - Understand how to read the math

Overview

- What does the derivative mean?
- What does integration mean?
- Weird vector notation
- In the beginning Faraday and Maxwell
- Inductance
- "Ground"

Derivative

How fast is *something* changing?

$$\frac{d}{dt}[something]$$

Changing with respect to time

 $\frac{d}{dx}$ [something]

Changing with respect to position (x)

Partial Derivative

How fast is *something* changing for one variable?

$$\frac{\partial}{\partial t} \left[something(t, x) \right]$$

Changing with respect to time (as 'x' is constant)

 $\frac{\partial}{\partial x} \left[something(t, x) \right]$

Changing with respect to position (x) (as time is constant)

Vector Notation

Dot, Gradient, Curl

- Dot Product
 - How much of something is going in a specified direction?

Vector Notation – Dot Product

Suppose we have an electric field that varies in x, y, z

$$\vec{E} = E_x + E_y + E_z$$
$$\vec{E} \cdot \hat{i} = E_x$$
$$\vec{E} \cdot \hat{j} = E_y$$
$$\vec{E} \cdot \hat{k} = E_z$$

Vector Notation -- Gradient

 How fast is something changing, and in what direction is this change?

$$\nabla \vec{E} = \left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right)\vec{E}$$

Gradient -- Example

- Voltage Distribution between power/gnd planes on printed circuit board
 - Standing wave due to resonance at 800 MHz
- Voltage Gradient
 - How fast is the voltage between plates changing?

Integration

- Simply the sum of parts (when the parts are very small)
 - Line Integral --- sum of small line segments
 - Surface Integral -- sum of small surface patches
 - Volume Integral -- sum of small volume blocks

Line Integral (find the length of the path)

$$V = -\int_{start}^{stop} (\vec{E} \bullet dl)$$

Line Integral

stop $\int \left[(E_x * dx) + (E_y * dy) \right]$ V = start

Line Integral -- Closed

- Closed line integrals find the path length
- And/or the amount of some quantity along that closed path length

Surface Integral (find the area of the surface)

$$Area = \int da$$
$$da = dx * dy$$
$$Area = \iint dx * dy$$

As *dx* and *dy* become smaller and smaller, the area is better calculated

Closed Surface Integral

• Find the surface area of a closed shape

shape da

Volume Integral (find the volume of an object)

$$Volume = \int dv$$
$$dv = dx * dy * dz$$
$$Volume = \iiint [dx * dy * dz]$$

Electromagnetics In the Beginning

- Electric and Magnetic effects not connected
- Electric and magnetic effects were due to 'action from a distance'
- Faraday was the 1st to propose a relationship between electric lines of force and time-changing magnetic fields
 - Faraday was very good at experiments and 'figuring out' how things work

Maxwell

- Maxwell was impressed with Faraday's ideas
- Discovered the mathematical link between the "electro" and the "magnetic"
- Scotland's greatest contribution to the world (next to Scotch)

Maxwell's Equations are not Hard!

- Change in H-field across space Change in E-field (at that point) with time
- Change in E-field across space Change in H-field (at that point) with time
- (Roughly speaking, and ignoring constants)

Current Flow

- Most important concept of EMC
- Current flow through metal changes as frequency increases
- DC current
 - Uses entire conductor
 - Only resistance inhibits current
- High Frequency
 - Only small part of conductor (near surface) is used
 - Resistance is small part of current inhibitor
 - Inductance is major part of current inhibitor

Skin Depth

 High frequency current flows only near the metal surface at high frequencies

δ =	1
	$\sqrt{\pi f\mu\sigma}$

Frequency	Skin Depth	Skin Depth
60 Hz	260 mils	8.5 mm
1 KHz	82 mils	2.09 mm
10 KHz	26 mils	0.66 mm
100 KHz	8.2 mils	0.21 mm
1 MHz	2.6 mils	0.066 mm
10 MHz	0.82 mils	0.021 mm
100 MHz	0.26 mils	0.0066 mm
1 GHz	0.0823 mils	0.0021 mm

Inductance

- Current flow through metal => inductance!
- Fundamental element in EVERYTHING
- Loop area first order concern
- Inductive impedance increases with frequency and is MAJOR concern at high frequencies

Impedance from inductance $\longrightarrow X_{L} = 2\pi fL$

Current Loop => Inductance

One Ring to bring them all and in the Darkness bind them.

Courtesy of Elya Joffe

Inductance Definition

- Faraday's Law $\oint \overline{E} \cdot dl = -\iint \frac{\partial \overline{B}}{\partial t} \cdot d\overline{S}$
- For a simple rectangular loop

The minus sign means that the induced voltage will work against the current that originally created the magnetic field!

Mutual Inductance

$$\Phi_2 = M_{21}I_1$$
$$M_{21} = \frac{\Phi_2}{I_1}$$

How much magnetic flux is induced in loop #2 from a current in loop #1?

$$\Phi_2 = \int_{S_2} \vec{B}_1(\mathbf{r}) \cdot \hat{n} \, \mathrm{dS}_2$$

Mutual Inductance

Less loop area in loop #2 means less magnetic flux in loop #2 and less mutual inductance

Less loop area perpendicular to the magnetic field in loop #2 means less magnetic flux in loop #2 and less mutual inductance

Self Inductance

Isolated circular loop

$$L \approx \mu_0 a \left(\ln \frac{8a}{r_0} - 2 \right)$$

• Isolated rectangular loop

$$L = \frac{2\mu_0 a}{\pi} \left(\ln \frac{p + \sqrt{1 + p^2}}{1 + \sqrt{2}} + \frac{1}{p} - 1 + \sqrt{2} - \frac{1}{p} \sqrt{1 + p^2} \right)$$

Note that inductance is directly influenced by loop <u>**AREA**</u> and only less influenced by conductor size!

 $p = \frac{length \ of \ side}{wire \ radius}$

Important Points About Inductance

- Inductance is everywhere
- Loop area most important
- Inductance is everywhere

Decoupling Capacitor Mounting

 Keep as to planes as close to capacitor pads as possible

Via Configuration Can Change Inductance

Comparison of Decoupling Capacitor Impedance 100 mil Between Vias & 10 mil to Planes

Comparison of Decoupling Capacitor Via Separation Distance Effects

0.1 uF Capacitor

Via Seperation (mils)	Inductance (nH)	Impedance @ 1 GHz (ohms)
20	.06	.41
40	0.21	1.3
60	0.36	2.33
80	0.5	3.1
100	0.64	4.0
150	1.0	6.23
200	1.4	8.5
300	2.1	12.69
400	2.75	17.3
500	3.5	21.7

Decoupling Capacitor Mounting

 Keep as to planes as close to capacitor pads as possible

Example #1 Low Cap Connection Inductance

Example #2 High Cap Connection Inductance

Example #1 Hi Cap Connection Inductance

Example #1 Lower Cap Connection Inductance

'Ground'

- Ground is a place where potatoes and carrots thrive!
- 'Earth' or 'reference' is more descriptive
- Original use of "GROUND"
- Inductance is everywhere

$$X_L = 2\pi f L$$

'Ground'

- Ground is a place where potatoes and carrots thrive!
- 'Earth' or 'reference' is more descriptive
- Original use of "GROUND"
- Inductance is everywhere

 $X_L = 2\pi f L$

What we Really Mean when we say 'Ground'

- Signal Reference
- Power Reference
- Safety Earth
- Chassis Shield Reference

'Ground' is NOT a Current Sink!

- Current leaves a driver on a trace and must return (somehow) to its source
- This seems basic, but it is often forgotten, and is most often the cause of EMC problems

'Grounding' Needs Low Impedance at Highest Frequency

Steel Reference Plate

- 4 milliohms/sq @ 100KHz
- 40 milliohms/sq @ 10 MHz
- 400 milliohms/sq @ 1 GHz
- A typical via is about 2 nH
 - $-@100 \text{ MHz} \quad \text{Z} = 1.3 \text{ ohms}$
 - $-@500 \text{ MHz} \quad \text{Z} = 6.5 \text{ ohms}$
 - -@1000 MHz Z = 13 ohms
 - @ 2000 MHz Z = 26 ohms

Where did the Term "GROUND" Originate?

- Original Teletype connections
- Lightning Protection

Original Teletype System Example

Original Teletype System Example

What we Really Mean when we say 'Ground'

- Signal Reference
- Power Reference
- Safety Earth
- Chassis Shield Reference

Circuit "Ground"

Chassis "Ground"

Digital "Ground"

Analog "Ground"

"Ground" as Signal Reference

"Ground" as Signal Reference

Traces/nets over a Reference Plane

Microstrip Transmission Line

Stripline Transmission Line

Traces/nets and Reference Planes in Many Layer Board Stackup

Microstrip Electric/Magnetic Field Lines (8mil wide trace, 8 mils above plane, 65 ohm)

Microstrip Electric/Magnetic Field Lines Common Mode

8 mil wide trace, 8 mils above plane, 65/115 ohm)

Microstrip Electric/Magnetic Field Lines Differential Mode

8 mil wide trace, 8 mils above plane, 65/115 ohm)

Electric/Magnetic Field Lines Symmetrical Stripline

Electric/Magnetic Field Lines Symmetrical Stripline (Differential)

Electric/Magnetic Field Lines Asymmetrical Stripline

Electric/Magnetic Field Lines Asymmetrical Stripline (Differential)

Return Current vs. "Ground"

- For high frequency signals, "Ground" is a concept that does not exist
- The important question is "where does the <u>return current</u> flow?"

Psudeo-Differential Net Summary

- Small amounts of skew can cause significant common mode current
- Small amount of rise/fall time deviation can cause significant amount of common mode current
- Discontinuities (vias, crossing split planes, etc) and convert significant amount of differential current into common mode current

Referencing Nets (Where does the Return Current Flow??)

- Microstrip/Stripline across split in reference plane
- Microstrip/Stripline through via (change reference planes)
- Mother/Daughter card

Are Stitching Capacitors Effective ???

- YES, at low frequencies
- No, at high frequencies
- Need to limit the high frequency current spectrum
- Need to avoid split crossings with ALL critical signals

Changing Reference Planes Six-Layer PCB Stackup Example

Microstrip/Stripline through via (change reference planes)

How can the Return Current Flow When Signal Line Goes Through Via??

Return Current Across Reference Plane Change

Possible Routing Options Six-Layer Board

Bad

Bad

Good

Compromise Routing Option for Many Layer Boards

Mother/Daughter Board Connector Crossing

 Critical Signals must be referenced to same plane on both sides of the connector

Return Current from Improper Referencing Across Connector

How Many "Ground" Pins Across Connector ???

- Nothing MAGICAL about "ground"
- Return current flow!
- Choose the number of power and "ground" pins based on the number of signal lines referenced to power or "ground" planes
- Insure signals are referenced against same planes on either side of connector

Summary

- Electromagnetics is not hard
 Must get past the messy math
- Understanding what the basic equations mean is important
- **CURRENT** is important
- "Ground" is a place for potatoes and carrots!
- Where does the return current flow?
 #1 cause of EMC related problems